Простейшие комбинаторные типы выпуклых полиэдров с группами симметрии средней сингонии и икосаэдрическими группами симметрии -3-5m и 235

Степенщиков Д.Г. ¹, Войтеховский Ю.Л. ²

- ¹ Геологический институт КНЦ РАН, stepen@geoksc.apatity.ru
- ² Санкт-Петербургский горный университет, Voytekhovskiy Yul@pers.spmi.ru

Аннотация. Для каждой группы симметрии средней сингонии найдена общая форма комбинаторных типов выпуклых полиэдров с минимальным числом граней. Найдены комбинаторные типы выпуклых полиэдров с минимальным числом граней для икосаэдрических групп симметрии -3-5*m* и 235.

Ключевые слова. Комбинаторный тип, некристаллографическая группа симметрии, средняя категория симметрии, икосаэдрическая симметрия, выпуклый полиэдр.

The simplest combinatorial types of the convex polyhedra with symmetry groups of the middle category and icosahedral symmetry groups -3-5m and 235

Stepenshchikov D.G. 1, Voytekhovsky Yu.L. 2

- ¹ Geological Institute KSC RAS, stepen@geoksc.apatity.ru
- ² Saint Petersburg Mining University, Voytekhovskiy_Yul@pers.spmi.ru

Abstract. For each symmetry group of the middle category the general shape of combinatorial types of the convex polyhedra with minimum number of faces is found. For icosahedral symmetry groups -3-5*m* and 235 combinatorial types of the convex polyhedra with minimum number of faces are found.

Key words. Combinatorial type, non-crystallographic symmetry group, middle category of symmetry, icosahedral symmetry, convex polyhedron.

В статье (Войтеховский, Степенщиков, 2020) показан метод доказательства существования простейших комбинаторных типов на примере групп симметрии *m*-3 и 432. Далее рассмотрен общий случай для групп симметрии средней категории. Найдены простейшие комбинаторные типы для недостающих 6 кристаллографических и бесконечного числа некристаллографических групп симметрии с главной осью любого порядка.

На рисунке 1 дан общий вид (т.е. при произвольном порядке n главной оси) ранее найденных простейших комбинаторных типов для групп симметрии средней категории. Рассмотрим для каж-

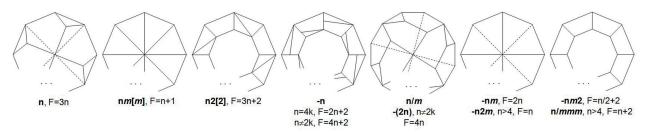


Рис. 1. Общий вид простейших комбинаторных типов для групп симметрии средней категории с числом граней F и порядком главной оси n. Квадратные скобки означают, что при нечетности n символ внутри них не пишется в обозначении группы симметрии. Для -n2m и n/mmm n>4 в связи n тем, что при n=4 указанные простейшие комбинаторные типы имеют более высокую симметрию тетраэдра и куба, соответственно.

Fig. 1. The general shapes of the simplest combinatorial types for symmetry groups of the middle category with F number of faces and n-fold main axis. Square brackets means the symbol within ones is absent in symmetry group notation for odd n. For -n2m and n/mmm n > 4 because provided n = 4 the simplest combinatorial types has higher tetrahedral and cubic symmetry, respectively.

дой группы симметрии все возможные комбинации простых форм, порождающих полиэдры с числом граней, меньшим, чем F.

Заметим, что для групп симметрии nm[m], -nm, -n2m, -nm2 и n/mmm таких комбинаций нет. Так, для группы симметрии n/mmm можно исключить из рассмотрения 2n- и ди-n-гональные призмы; n-, 2n- и ди-n-гональные дипирамиды с числом граней, большим, чем n+2. Оставшиеся n-гональная призма и пинакоид порождают единственный полиэдр с простейшим комбинаторным типом, указанным на рисунке 1.

Таблица 1. Все комбинации простых форм группы симметрии n, порождающие полиэдры с числом граней, меньшим, чем 3n.

Table 1. All combinations of the simple forms for n symmetry group, producing polyhedra with number of faces less than 3n.

№	моноэдры	n-гональные призмы	n-гональные пирамиды	число граней
1			2	2n
2	1		1	n+1
3	1		2	2n+1
4	1	1	1	2n+1
5	2		1	n+2
6	2		2	2n+2
7	2	1		n+2
8	2	1	1	2n+2
9	2	2		2n+2

Для группы симметрии п все 9 возможных комбинаций простых форм с числом граней меньше 3n+2 даны в табл. 1. Комбинации призм с моноэдрами (№№ 7, 9) и пирамиды с моноэдрами (№№ 2, 5) порождают полиэдры с вертикальными плоскостями симметрии, т.е. их комбинаторные

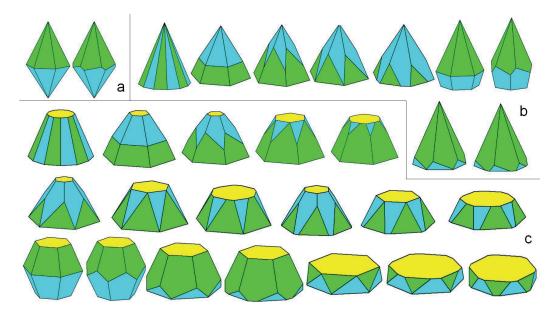


Рис. 2. а – все комбинации двух n-гональных пирамид, b – двух n-гональных пирамид и моноэдра, с – двух n-гональных пирамид и двух моноэдров. Здесь и далее на рисунках даны изображения полиэдров с конкретным значением n (здесь 6). Но для иллюстрации периодичности строения поверхности при любом n это не существенно.

Fig. 2. a – all combinations of two n-gonal pyramids, b – of two n-gonal pyramids and monohedron, c – of two n-gonal pyramids and two monohedra. Hereinafter polyhedra with definite n (6 in this case) are drawn. But for illustration of periodic-built surface for any n it is not significant.

типы заведомо имеют более высокую комбинаторную симметрию. Комбинаторно различные полиэдры для оставшихся комбинаций двух пирамид (\mathbb{N} 1), двух пирамид с моноэдром (\mathbb{N} 3), двух пирамид с двумя моноэдрами (\mathbb{N} 6), пирамиды с призмой и моноэдром (\mathbb{N} 4), пирамиды с призмой и двумя моноэдрами (\mathbb{N} 8) показаны на рисунке 2. В последних двух комбинациях призму можно рассматривать как предельный случай пирамиды.

Таблица 2. Все комбинации простых форм группы симметрии n2[2], порождающие полиэдры с числом граней, меньшим, чем 3n+2.

Table 2. All combinations of the simple forms for n2[2] symmetry group, producing polyhedra with number of faces less than 3n+2.

№	пинакоид	n-гональные призмы	2n-гональные призмы	ди-п-гональные призмы	n-гональные дипирамиды	n-гональные трапецоэдры	число граней
1						1	2n
2					1		2n
3		1				1	3n
4		1			1		3n
5	1					1	2n+2
6	1				1		2n+2
7	1			1			2n+2
8	1		1				2n+2
9	1	1					n+2
10	1	2					2n+2

Для группы симметрии n2[2] все 10 возможных комбинаций простых форм с числом граней меньше 3n+2 даны в таблице 2. Дипирамида (№ 2), комбинации дипирамиды с пинакоидом (№ 6), а также призм с пинакоидом (№№ 7-10) порождают полиэдры с вертикальными плоскостями симметрии, т.е. их комбинаторные типы заведомо имеют более высокую симметрию, чем n2[2]. Трапецоэдр (№ 1) в зависимости от четности п имеет комбинаторный тип с симметрией -nm или -n2m. Комбинаторно различные полиэдры для оставшихся комбинаций трапецоэдра с призмой (№ 3), дипирамиды с призмой (№ 4) и трапецоэдра с пинакоидом (№ 5) даны на рисунке 3.

Для группы симметрии -n все 5 возможных комбинаций простых форм с числом граней, меньшим, чем 2n+2 при n, кратном 4, и меньшим, чем 4n+2 при нечетном n даны в таблице 3. Трапецоэдры в данной группе обладают плоскостями симметрии, поэтому трапецоэдр (N 1), его комбина-

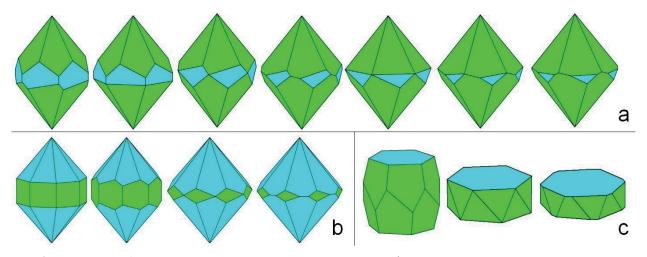


Рис. 3. а - все комбинации n-гональных трапецоэдра и призмы, b-n-гональных дипирамиды и призмы, c-n-гонального трапецоэдра и пинакоида.

Fig. 3. a - all combinations of n-gonal trapezohedron and prizma, b - of n-gonal bipyramid and prizma, c - of n-gonal trapezohedron and pinacoid.

ция с пинакоидом (\mathbb{N}_2 4), а также комбинация призмы с пинакоидом (\mathbb{N}_2 5) порождают полиэдры с вертикальными плоскостями симметрии. Их комбинаторные типы имеют комбинаторную симметрию, заведомо отличающуюся от -n. Комбинаторно различные полиэдры для оставшихся комбинаций двух трапецоэдров (\mathbb{N}_2 2) и призмы с трапецоэдром (\mathbb{N}_2 3) даны на рисунке 4.

Таблица 3. Все комбинации простых форм группы симметрии -n, порождающие полиэдры с числом граней, меньшим, чем 2n+2, при n, кратном 4, и меньшим, чем 4n+2, при нечетном n.

Table 3. All combinations of the simple forms for -n symmetry group, producing polyhedra with number of faces less than 2n+2 for n multiple of four and less than 4n+2 for odd n.

№	пинакоид	n=4k	n-гональные призмы	n/2-гональные трапецоэдры	число граней	
		n≠2k	2n-гональные призмы	n-гональные трапецоэдры	n=4k	n≠2k
1				1	n	2n
2				2	2n	4n
3			1	1	2n	4n
4	1			1	n+2	2n+2
5	1		1		n+2	2n+2

Для групп симметрии n/m и -(2n) при нечетном n все 6 возможных комбинаций простых форм с числом граней, меньшим, чем 4n, даны в таблице 4. Дипирамида (\mathbb{N}_2 1), ее комбинация с пинакоидом (\mathbb{N}_2 3), а также комбинация призм с пинакоидом (\mathbb{N}_2 4, 6) порождают полиэдры с вертикальными плоскостями симметрии, т.е. их комбинаторные типы заведомо имеют более высокую комбинаторную симметрию, отличающуюся от n/m или -(2n). Комбинаторно различные полиэдры для оставшихся комбинаций призмы с дипирамидой (\mathbb{N}_2 2) и призмы с дипирамидой и пинакоидом (\mathbb{N}_2 5) даны на рисунке 3 b и 5.

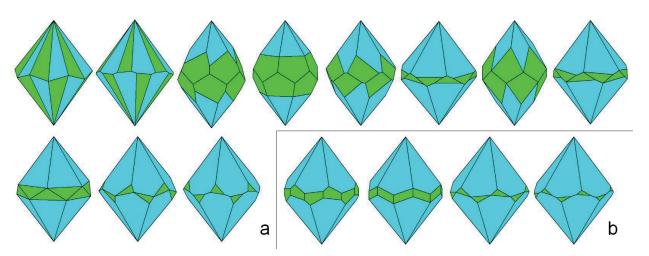
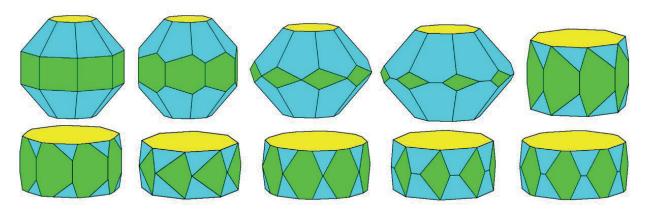



Рис. 4. а – все комбинации двух n-гональных трапецоэдров, b – 2n-гональной призмы и n-гонального трапецоэдра (или n-гональной призмы и n/2-гонального трапецоэдра).

Fig. 4. a – all combinations of two n-gonal trapezohedrons, b – of 2n-gonal prizma and n-gonal trapezohedron (or n-gonal prizma and n/2-gonal trapezohedron).

Все полиэдры на рисунке 2-5, за одним исключением, имеют комбинаторные типы с симметрией, обладающей вертикальными плоскостями, не свойственными ни одной из рассматриваемых групп. Исключение составляет второй справа полиэдр на рисунке 3 а, чей комбинаторный тип имеет симметрию п, отличную от n2[2]. Таким образом, все эти полиэдры имеют комбинаторные типы, симметрии которых отличаются от рассматриваемых групп симметрии. Значит, указанные на рисунке 1. комбинаторные типы – простейшие.

Puc. 5. Все комбинации пинакоида, n-гональной призмы и n-гональной дипирамиды. Fig. 5. All combinations of pinacoid, n-gonal prizma and n-gonal bipyramid.

Таблица 4. Все комбинации простых форм групп симметрии n/m и -(2n) при нечетном n, порождающие полиэдры с числом граней, меньшим, чем 4n.

Table 4. All combinations of the simple forms for n/m and -(2n) symmetry groups with odd n, producing polyhedra with number of faces less than 4n.

$N_{\underline{0}}$	пинакоид	n-гональные призмы	n-гональные дипирамиды	число граней
1			1	2n
2		1	1	3n
3	1		1	2n+2
4	1	1		n+2
5	1	1	1	3n+2
6	1	2		2n+2

При n=3, 4 и 6, используя рисунок 1, получим комбинаторные типы для оставшихся кристаллографических групп симметрии, указанные в (Войтеховский, Степенщиков, 2020, рис. 2). При любом другом n можно получить простейший комбинаторный тип для любой некристаллографической группы симметрии средней категории. Чтобы закрыть множество всех некристаллографических групп симметрии, осталось рассмотреть две икосаэдрические группы -3-5m и 235. Для -3-5m простейший комбинаторный тип найден среди известного полного многообразия 12-эдров - это додекаэдр (рис. 6 a), а для 432 — одна из простых форм этой группы c 60 гранями общего положения (рис. 6 b). Таким образом, нами получены простейшие комбинаторные типы для всех точечных групп симметрии.

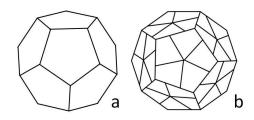


Рис. 6. Простейшие комбинаторные типы выпуклых полиэдров с комбинаторной симметрией -3-5m (a) и 235 (b).

Fig. 6. The simplest combinatorial types of convex polyhedra with combinatorial symmetry -3-5m (a) and 235 (b).

Литература

1. Войтеховский Ю.Л., Степенщиков Д.Г. Простейшие комбинаторные типы выпуклых полиэдров с кристаллографическими группами симметрии // Тр. XVI Всерос. Ферсмановской научн. сессии. Апатиты, Геол. ин-т КНЦ РАН, 5-8 апр. 2020 г. Апатиты. Изд-во: КНЦ РАН. 2020. (Наст. сб.)