Особенности петрографического состава обломочной фракции тиллов у д. Варзуга (Терские Кейвы, юг Кольского полуострова)

Носова О.Ю. 1 , Вашков А.А. 1 , Колька В.В. 1 , Корсакова О.П. 1 , Толстобров Д.С. 1 , Костромина Н.А. 2 , Крикунова А.И. 2

Аннотация. Приводятся данные о петрографическом составе крупнообломочной фракции тиллов, участвующих в строении Терских Кейв в районе д. Варзуга и прилегающих моренных равнин. Сравнение составов абляционных тиллов из краевых гряд и базальных тиллов моренной равнины позволило предположить, что образованию флювиогляциальных отложений фрагмента Терских Кейв у д. Варзуга предшествовало проникновение льдов Беломорской лопасти на север, северо-восток во время подвижки отступающего поздневалдайского ледника.

Ключевые слова: Терские Кейвы, тиллы, петрографический состав обломков, направления движения ледника.

Features of petrographical composition of till debris near the Varzuga Village (Terskie Keivy, the south of the Kola Peninsula)

Nosova O. Yu. ¹, Vashkov A.A. ¹, Kolka V.V. ¹, Korsakova O.P. ¹, Tolstobrov D.S. ¹, Kostromina N.A. ², Krikunova A.I. ²

Abstract. There are data on petrographical composition of coarse-clastic fraction of tills studied in sections of the Terskie Keivy near the Varzuga Village and adjacent moraine plains. Comparison of composition of ablation till from the ice-marginal ridges and basal tills of moraine plain allowed to assume that ice of the White Sea Lobe penetrated north-, north-eastwards during readvance of the retreating Late-Weichselian glacier before the fluvioglacial deposits of the Terskie Keivy near the Varzuga Village were formed.

Key words: the Terskie Keivy, tills, petrographical composition of debris, ice movement directions.

Введение

Одними из наиболее спорных в четвертичной геологии Кольского региона являются вопросы механизма и времени формирования ярко выраженных в рельефе ледниковых образований Терских Кейв. Они тянутся параллельно Терскому берегу Белого моря и включают в себя гряды от р. Колвицы до р. Поной (Лаврова, 1960; Стрелков и др., 1976); от р. Варзуги до р. Лумбовки или р. Поной (Hattestrand et al., 2007; Lunkka et al., 2018). Большинство предыдущих интерпретаций генезиса Кейв опиралось преимущественно на их геоморфологические особенности. На сегодняшний день можно выделить несколько основных групп гипотез образования Терских Кейв: 1) Кейвы сформировались в краевой зоне Беломорской лопасти (Апухтин и др., 1967; Евзеров и др., 2000); 2) как краевая зона ледника, покрывавшего внутренние территории Кольского региона (Лаврова, 1960); 3) в краевой зоне между активным или стагнированным льдом Скандинавского ледникового щита, проникшим в центральные части Кольского полуострова, или самостоятельным Понойским ледниковым щитом и Беломорской лопастью Скандинавского щита (Григорьев, 1934; Арманд, 1965; Стрелков и др., 1976; Hattestrand et al., 2007; Lunkka et al., 2018 и др.); 4) образованы льдами Баренцевоморского ледника, проникавшими по горлу Белого моря с севера – северо-востока (Гросвальд, 1996). Стоит отметить, что практически во всех моделях образования Кейв отсутствуют данные об их вещественном составе, хотя этот материал может послужить решающим доводом в доказательство выдвигаемых гипотез и более точно указать на источники поступления обломков, а значит и распространения ледников. Только в работе Стрелкова с соавторами говорится о находках

¹ Геологический институт КНЦ РАН, Anamumы, nosova@geoksc.apatity.ru

² Институт наук о Земле СПбГУ

¹ Geological Institute of the Kola Science Centre of RAS, nosova@geoksc.apatity.ru

² Institute of Earth Sciences of the St.Petersburg State University

терских песчаников севернее их коренных выходов, что позволило говорить о значительном продвижении льдов Беломорской лопасти с юга (Стрелков и др., 1976).

Геологическое строение района работ

В ходе полевых работ 2018 года были изучены разрезы ледниковых отложений Терских Кейв в районе д. Варзуга (рис. 1). Коренные породы в районе исследований представлены различными гранитоидами Терского, Вороньинского и Стрельнинского комплексов (рис. 1 А). Реже встречаются породы комплекса основания, представленные биотиовыми, амфибол-биотитовыми гнейсами, тоналито-гнейсами, гранодиорито-гнейсами. На севере района работ широко развиты породы западносерговской толщи (риолиты, дацитовые, андезито-дацитовые порфиры и др.) и кислогубской свиты (слюдяные, гранат-слюдяные парагнейсы и сланцы, конгломераты, кварциты). Породы западносерговской толщи прорываются телами габбро-диабазов, габбро-амфиболитов Серговского комплекса. На юге, юго-востоке вдоль побережья Белого моря распространены породы терской свиты – красноцветные песчаники, конгломераты, алевролиты и др. (Геологическая..., 2001).

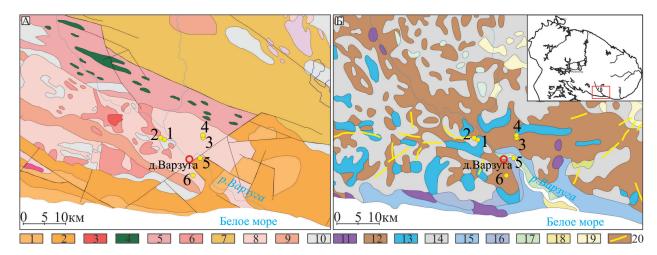


Рис. 1. Геологическая карта дочетвертичных (А) и четвертичных (Б) образований района работ (на основании (Геологическая..., 2001; Государственная..., 2010)).

Дочетвертичные образования (A): 1, 2 – конгломераты, песчаники, алевролиты терской свиты; 3 – лейкограниты Стрельнинского комплекса; 4 – габбро-диабазы, габбро-амфиболиты Серговского комплекса; 5 – риолиты, дациты, туфы, метаосадки западносерговской толщи; 6 – лейкограниты, гранодиориты Вороньинского комплекса; 7 – слюдяные, гранат-слюдяные гнейсы и сланцы кислогубской свиты; 8 – гранодиориты, плагиограниты, тоналиты Терского комплекса; 9 – гнейсы, амфиболиты сергозёрской толщи; 10 – гнейсы биотитовые, амфибол-биотитовые, тоналито-гнейсы, амфиболиты комплекса основания. Четвертичные отложения (Б): 11 – выходы коренных пород; 12 – основная нормально-пластовая морена; 13 – лимногляциальные; 14 – болотные; 15 – современные морские; 16 – морские отложения трансгрессии портландия; 17 – аллювиальноморские; 18 – эоловые; 19 – элювиально-делювиальные; 20 – озы. Цифры на карте – изученные обнажения: 1 – Перелой-1; 2 – Перелой-2; 3 – Кицкие Родники-1; 4 – Кицкие Родники-2; 5 – Клетной порог; 6 – Дедкин Ручей.

Fig. 1. Geological map of bedrock (A) and quaternary deposits (B) of study area (by (Geological..., 2001; State..., 2010)).

Bedrock (A): 1, 2 – conglomerates, sandstones, siltstones of the Terskaya suite; 3 – leucogranites of the Strelna complex; 4 – gabbro-diabases, gabbro-amphibolites of the Serga complex; 5 – riolites, dacites, tuffs, metasediments of the Zapadnosergovskaya unit; 6 – leucogranites, granodiorites of the Voronya complex; 7 – micaceous, garnet-micaceous greisses and schists of the Kislaya Guba suite; 8 – granodiorites, plagiogranites, tonalities of the Tersky complex; 9 – greisses, amphibolites of the Sergozerskaya unit; 10 – biotite, amphibol-biotite gneisses, tonalite-greisses, amphibolites of the Basement complex. Quaternary deposits (Б): 11 – bedrock outcrops; 12 – basal normal-bedded moraine; 13 – limnoglacial; 14 – palustrine; 15 – present marine; 16 – marine deposits of the Portlandia transgression; 17 – alluvial-marine; 18 – eolian; 19 – eluvial-deluvial; 20 – eskers. Numerals on the map – studied outcrops: 1 – Pereloy-1; 2 – Pereloy-2; 3 – Kitskie Rodniki-1; 4 – Kitskie Rodniki-2; 5 – Kletnoy Rapid; 6 – Dedkin Ruchey.

Изученный участок Терских Кейв представляет собой хорошо выраженные в рельефе цепочки гряд и холмов, осложненные гляциокарстовыми понижениями. Относительная высота гряд — 20-30 м. Долина р. Варзуга разделяет Терские Кейвы в районе работ на западный и восточный фрагменты. Согласно различным представлениям Кейвы здесь являются либо флювиогляциальными отложениями типа озов на западе и базальным тиллом на востоке (Государственная..., 2010), либо фрагментарно сложены тиллами и флювиогляциальными отложениями (Лаврова, 1960), либо представлены насыпными и напорно-насыпными моренами (Евзеров и др., 2000), либо являются ледораздельными озами (Четвертичные..., 2003). На севере и юге к Кейвам примыкают моренные равнины с участками развития озёрно-ледниковых отложений и современных болотных образований. Вдоль побережья Белого моря распространены морские отложения, слагающие морские террасы, а также встречаются эоловые образования. (рис. 1 Б).

Методы

В ходе исследований применялся комплекс геологических, петрографических и геоморфологических методов. Были изучены разрезы ледниковых отложений на поверхности гряд в урочищах Перелой и Кицкие Родники, а также в пределах моренных равнин на севере у подножия гряд и на юге (рис. 1). При изучении разрезов проводилось послойное описание отложений, включающее определение гранулометрического состава, цвета по шкале Munsell, характера ледниковых текстур и др. Петрографический состав крупнообломочной фракции тиллов изучался для валунной (>100 мм), галечной (10-100 мм) и крупногравийной (5-10 мм) фракций. Состав валунной фракции определялся для абляционных тиллов на поверхности гряд в пределах участка 5 × 5 м. Галечногравийный материал отбирался из толщ абляционного и базального тиллов из разрезов гряд и прилегающих моренных равнин.

Результаты

В результате изучения было установлено, что западный и восточный фрагменты Терских Кейв сложены флювиогляциальными образованиями, перекрытыми маломощным абляционным тиллом (рис. 2 A и Б). Типичное строение отложений гряд установлено в разрезе обн. Перелой-1 (N 66°26'43,6», E 36°28'39,8»; рис. 2 A). Сверху вниз отложения представлены:

Слой-1 — песок разнозернистый, преимущественно среднезернистый, коричневато-жёлтого цвета, с гравием, галькой, валунами и значительным содержанием алеврито-глинистых частиц, уплотненный, без видимой слоистости, без закономерности в ориентировке обломков. Мощность 0.2-0.45м.

Рис. 2. Фото ледниковых отложений, вскрытых шурфами в точках Перелой-1 (A), Кицкие Родники-1(Б), Кицкие Родники-2 (B). Цифрами в кружках показаны номера слоев согласно тексту.

Fig. 2. Photos of glacial deposits uncovered in pits in the Pereloy-1(A), Kitskie Rodniki-1 (δ), Kitskie Rodniki-2 (B) points. The numerals in circles indicate layer numbers according to the text.

Слой-2 — песок желтовато-коричневый преимущественно среднезернистый, с небольшим содержанием алеврито-глинистого материала, слоистый. Встречаются отдельные гальки и прослои крупнозернистого песка с гравием. Слоистость падает по азимуту 10° и углом 11° . Мощность 0.2 м.

Слой-3 — переслаивание песчано-гравийных и песчано-гравийно-галечных смесей с валунами. Материал хорошо промыт, слабо отсортирован. Слоистость падает по азимуту $13\,^\circ$ под углом $13\,^\circ$. Мощность $0.65\,^\mathrm{M}$ м.

Слой-4 — песок среднезернистый серо-жёлтый, сортированный, промытый, с редкими зернами гравия и гальки, слоистый. Слоистость субпараллельная и падает по азимуту 355° под углом 11° . Мощность вскрытая 0.7 м.

Подобное строение гряды было установлено нами и в восточном фрагменте Кейв — в обн. Кицкие Родники-1. В данных разрезах на петрографический состав был опробован слой абляционного тилла, представленного разнозернистым несортированным песком с гравием, галькой, валунами и алеврито-глинистой составляющей.

Ледниковые отложения, слагающие моренную равнину к югу от Терских Кейв, изучены в обнажении Клетной порог и описаны ранее (Гудина и др., 1973; Корсакова, 2011; Евзеров, 2016). Здесь базальный тилл, залегающий с поверхности и имеющий мощность более 3 м, представлен красносерой супесью с гравием, галькой и валунами. Для него характерна плитчатая текстура, прослои глин и обломки раковин. Аналогичные по цвету и гранулометрическому составу тиллы опробованы южнее в обн. Дедкин Ручей (N 66°21'44,3», Е 36°35'47,5») и у северного подножия восточного фрагмента Терских Кейв (обн. Кицкие Родники-2, N 66°26'32», Е 36°40'52,7») (рис. 1, 2 В).

В результате петрографического анализа обломочного материала установлено (табл. 1):

- 1) состав абляционных тиллов гряд при доминирующем присутствии местных подстилающих пород (плагиогранитов, гранито-гнейсов, гнейсов) характеризуется также смешением материала, принесённого с северных, северо-западных, западных направлений с материалом южных и юго-западных источников. На северные, северо-западные, западные источники указывает наличие обломков нефелиновых сиенитов Хибинского и Ловозерского массивов, габбро-лабрадорита и габбро-норита с бурым плагиоклазом, возможно принесённых из массивов Фёдорово-Панских тундр (возможные источники габбро-лабрадорита также массивы Кандалакшский, Колвицкий, Главного хребта), актинолитовых сланцев по базальтам, принадлежащих толщам пояса Имандра-Варзуга и др. На перенос с южных направлений указывает наличие обломков красноцветных песчаников и алевролитов терской свиты.
- 2) в абляционном тилле западного участка наряду с несколько большим содержанием плагиогранитов и гнейсов (источники Терский комплекс, комплекс основания, возможно сергозерская толща), отмечается заметное превышение слюдяных гнейсов и сланцев, источником которых являются породы западносерговской толщи или кислогубской свиты, развитые на северо-западе, севере. На восточном участке значительно выше содержания песчаников и алевролитов терской свиты, принесённых с юго-запада, юга.
- 3) для базальных тиллов моренной равнины характерны высокие или доминирующие содержания терских пород, но также встречаются нефелиновые сиениты Хибинского и Ловозерского массивов и другие породы, принесённые с севера, северо-запада, запада.
- 4) состав базального тилла моренной равнины, примыкающей с севера к восточному фрагменту Терских Кейв (обн. Кицкие Родники-2), близок к составу базальных тиллов моренной равнины, примыкающей с юга (обн. Дедкин Ручей и Клетной порог) в сравнении с абляционным тиллом гряды в нём ниже содержания плагиогранитов, гнейсов и др., и больше пород терской свиты, в том числе и зеленовато-серых алевролитов, что характерно для базальных тиллов моренной равнины на юге.

Обсуждение и выводы

Полученные нами новые данные указывают на движение Беломорской лопасти в районе д. Варзуга с юга, юго-запада на север, северо-восток. Об этом говорит обнаружение насыщенного

песчаниками базального тилла на севере от восточного фрагмента Терских Кейв. На это также указывает постепенное падение содержания в пробах базальных тиллов обломков зеленовато-серых алевролитов с юга на север (табл. 1). Так как в строении западного и восточного фрагмента гряд не обнаружено базального тилла, перекрывающего отложения, можно утверждать, что изучаемая часть Терских Кейв полностью или частично образовалась при деградации распространившейся на север Беломорской лопасти. Обнаружение в тиллах вместе с принесённым с юга материалом обломков пород, источники которых расположены на западе, северо-западе и севере, указывает на воздействие льдов, продвигавшихся из центральных частей Кольского региона. Перемещение материала с северных направлений могло происходить во время максимального развития оледенения (поздневалдайского), а продвижение льдов Беломорской лопасти на север, северо-восток связывается нами с подвижкой поздневалдайского отступающего ледника.

Таблица 1. Петрографический состав обломочного материала тиллов Терских Кейв и прилегающих моренных равнин.

Table 1. Petrographical composition of till debris of the Terskie Keivy and adjacent moraine plains.

Группы пород/минералов	> 10	00мм	10-100мм						5-10мм					
	1a*	3a	1a	2a	3a	46	56	66	1a	2a	3a	46	56	66
Песчаники	5.1	65.8	9.7	10.8	27.2	39.6	59.4	57.9	7.5	10.4	24.5	31.3	53.7	47.7
Алевролиты (зеленовато-серые)	_	_	0.4	0.8	0.7	6.7	10.1	19.3	0.3	1.6	1.7	7.0	12.9	21.5
Плагиограниты, граниты, граниты, гранито-гнейсы, гнейсы	74.8	32.2	65.3	56.4	56.5	38.1	20.9	14.9	63.7	57.7	54.1	45.5	24.2	21.2
Слюдяные гнейсы, сланцы	3.9	_	9.0	8.8	2.1	3.1	_	_	7.9	9.8	0.6	2.4	_	_
Гнейсы с силлиманитом и/или кордиеритом	0.3	_	0.3	0.8	0.1	1.3	2.5	0.9	0.5	0.6	0.2	1.4	2.0	1.0
Основные породы, в т. ч.:														
Амфиболиты	10.2	0.5	4.0	10.0	3.9	4.2	1.8	1.3	3.9	5.9	3.1	4.5	1.6	2.4
Метагаббро-милониты/ основные гранулиты	_	_	_	0.2	0.1	2.0	_	1.8	0.1	0.5	_	0.5	0.3	0.9
Основные породы разн.	0.8	_	0.5	1.1	1.0	0.2	1.1	0.4	0.1	0.4	0.5	0.2	0.8	0.8
Перидотиты/оливиниты	0.1	_	_	_	_	_	0.4	-	_	_	_	0.1	0.1	0.1
Актинолитовые сланцы (метавулканиты)	3.7	_	1.7	4.1	1.9	1.9	0.4	0.4	1.3	2.5	3.1	2.2	0.5	0.3
Нефелиновые сиениты	0.5	0.5	0.7	0.4	_	0.3	0.7	1.8	0.5	0.8	0.4	0.5	0.6	0.8
Жильные щелочные и лампрофиры	0.1	_	0.1	0.4	_	0.7	2.2	0.4	0.2	0.4	_	0.2	1.0	0.1
Фойдолиты	_	_	_	0.1	_	0.2	_	_	_	_	_	0.1	0.1	_
Фенитизированные породы	_	_	_	_	0.1	_	_	_	0.1	_	_	0.2	_	0.2
Полевые шпаты	_	_	4.0	1.8	2.8	1.1	0.7	_	7.3	5.3	5.9	1.8	1.5	2.2
Кварц	0.5	1.0	4.5	4.2	3.6	0.8	_	0.9	6.6	4.3	5.8	2.0	0.9	0.9

^{* 1 –} Перелой-1; 2 – Перелой-2; 3 – Кицкие Родники-1; 4 – Кицкие Родники -2; 5 – Клетной порог; 6 – Дедкин Ручей согласно рисунка 1; а – абляционный тилл, б – базальный тилл.

Работа выполнена по теме НИР 0226–2019–0054 лаборатории №43 Геологического института КНЦ РАН и в рамках диссертационного исследования. Авторы выражают глубокую благодарность сотрудникам Мурманского филиала ФБУ «ТФГИ по СЗФО» за предоставленный фондовый и каменный материал по геологическому строению дочетвертичных образований в районе работ.

Литература

1. Апухтин Н.И., Яковлева С.В. История геологического развития Северо-Запада европейской части СССР в четвертичное время / Геология четвертичных отложений Северо-Запада европейской части СССР. Л. Изд-во: Недра. 1967. С. 318–326.

- 2. Арманд Н.Н. Краевые образования малоактивного ледникового щита и зона его сочленения со Скандинавским покровом / Краевые образования материкового оледенения. Вильнюс. 1965. С. 45–50.
- 3. Геологическая карта Кольского региона. Масштаб 1: 1 000 000. Гл. ред. Ф. П. Митрофанов. Апатиты. 2001.
- 4. Государственная геологическая карта Российской Федерации. Масштаб 1: 1 000 000 (третье поколение). Серия Балтийская. Геологическая карта четвертичных образований. Лист Q–37 (Архангельск). Гл. ред. К.Э. Якобсон. СПб.: Картографическая фабрика ВСЕГЕИ. 2010.
- 5. Григорьев А.А. Геоморфология Кольского полуострова по новейшим исследованиям // Докл. советских делегатов на Международном Географическом конгрессе в Варшаве. М. 1934. 10 с.
- 6. Гросвальд М.Г. Последриасовая (< 10 тыс. лет назад) трансгрессия льда Баренцева моря на северовосток Европы // Докл. АН. Т. 350. География. 1996. № 5. С. 687–691.
- 7. Гудина В.И., Евзеров В.Я. Стратиграфия и фораминиферы верхнего плейстоцена Кольского полуострова. Новосибирск. Изд-во: Наука. 1973. 146 с.
- 8. Евзеров В.Я. Геология четвертичных отложений Кольского региона. Мурманск. Изд-во: МГТУ. 2016. 210 с.
- 9. Евзеров В.Я., Николаева С.Б. Пояса краевых ледниковых образований Кольского региона // Геоморфология. 2000. № 1. С. 61–73.
- 10. Корсакова О.П., Семёнова Л.Р., Колька В.В. Средне- и верхнеплейстоценовые осадки в разрезе обнажения Варзуга (юг Кольского полуострова) // Региональня геология и металлогения. 2011. № 48. С. 19–24.
- 11. Лаврова М.А. Четвертичная геология Кольского полуострова. М.–Л. Изд-во: Наука. 1960. 233 с.
- 12. Стрелков С.А., Евзеров В.Я., Кошечкин Б.И., Рубинраут Г.С., Афанасьев А.П., Лебедева Р.М., Каган Л.Я. История формирования рельефа и рыхлых отложений северо-восточной части Балтийского щита. Л. Изд-во: Наука. 1976. 164 с.
- 13. Четвертичные отложения Финляндии и Северо-Запада Российской Федерации и их сырьевые ресурсы. Масштаб 1:1000000. Под ред. Й. Ниэмеля, И.М. Экмана, А.Д. Лукашова. 2003.
- 14. Hattestrand C., Kolka V., Stroeven A.P. The Keiva ice marginal zone on the Kola Peninsula, northwest Russia: a key component for reconstructing the palaeoglaciology of the northeastern Fennoscandian Ice Sheet // Boreas. 2007. V. 36. P. 352–370. DOI: 10.1080/03009480701317488.
- 15. Lunkka J.P., Kaparulina E., Putkinen N., Saarnisto M. Late Pleistocene palaeoenvironments and the last deglaciation on the Kola Peninsula, Russia // Arktos. 2018. V. 4. P. 1-18. DOI: 10.1007/s41063-018-0053-z.