## Новые данные о минералогии золото-уранового рудопроявления Ромпас, Финляндия

Полеховский Ю.С. 1\*, Петров С.В. 1, Калинин А.А. 2, Коваль А.В. 1

**Аннотация.** В аншлифах, изготовленных из образцов рудопроявления Ромпас установлено 10 видов рудных минералов: уранинит, самородное золото, мальдонит, монтбрейит, алтаит, мелонит, фробергит, теллурантимон, теллурид висмута BiTe<sub>2</sub>, а также оксид теллура теллурит. Изучен состав минералов золота и теллуридов никеля, железа, свинца, висмута и сурьмы. Показано, что развитие минерализации золота и теллуридов проходило многостадийно, и золото неоднократно переотлагалось, сформировав несколько генераций. Такие минералы, как монтбрейит, мелонит, фробергит, теллурантимон, теллурид висмута BiTe<sub>2</sub> и теллурит установлены на рудопроявлении Ромпас впервые.

**Ключевые слова:** Ромпас, золото-урановая минерализация, золото, мальдонит, монтбрейит, теллуриды, теллурит.

## New Data on Mineralogy of the Rompas Uranium-Gold prospect, Finland

Polekhovsky Yu.S. 1, Petrov S.V. 1, Kalinin A.A. 2, Koval A.V. 1

**Abstract.** Ten ore minerals have been found in the specimen from the Rompas prospect: uraninite, native gold, maldonite, montbrayite, altaite, melonite, frobergite, tellurantimony, bismuth telluride BiTe<sub>2</sub>, tellurium oxide tellurite. Chemical composition of minerals of gold and of tellurides has been studied. Deposition of gold and tellurides has a multi-stage character, gold was redeposited and formed few generations. Montbrayite, melonite, froberfite, tellurantimony, bismuth telluride BiTe<sub>2</sub>, tellurite have not been reported earlier in the Rompas prospect.

Key words: Rompas, uranium-gold mineralization, gold, maldonite, montbrayite, tellurides, tellurite.

Рудопроявление Ромпас расположено в северной части раннепротерозойского сланцевого пояса Перапохья. Участок рудопроявления сложен метабазальтами с небольшим количеством вулканокластитов, карбонатными породами, кварцитами и графитсодержащими биотитовыми глиноземистыми сланцами (Mineral deposits..., 2015, Molnár et al., 2016, 2017, Гребенкин и др., 2015, Калинин, 2018). Породы претерпели метаморфизм амфиболитовой фации в палеопротерозойское время.

Как метавулканиты, так и метаосадочные породы содержат амфибол-карбонат-кварцевые жилы мощностью до 30 см (Molnár et al., 2016, Гребенкин и др., 2015). Жилы смяты в складки вместе с вмещающими их породами, то есть формировались до пика регионального метаморфизма. Более поздние деформации отразились в будинировании жил, сопровождавшимся переотложением жильных минералов и образованием сигарообразных метровой длины обособлений доломита. С жилами и обособлениями доломита связаны аномально высокие концентрации урана и золота, повышенное содержание битуминозного вещества, развитие порфиробластического уранинита.

Золото-урановая минерализация образуется исключительно в жилах, приуроченных к метабазальтам, а точно такие же по составу и текстурно-структурным особенностям жилы в метаосадках безрудные (Mineral deposits..., 2015, Molnár et al., 2016). Минерализация урана и золота отмечается

<sup>&</sup>lt;sup>1</sup> Институт наук о Земле, СПбГУ, Санкт-Петербург, petrov64@gmail.com

<sup>&</sup>lt;sup>2</sup>Геологический институт КНЦ РАН, Anamumы, kalinin@geoksc.apatity.ru

<sup>&</sup>lt;sup>1</sup> Institute of Earth Sciences, S-Peterburg State University, S-Peterburg, petrov64@gmail.com

<sup>&</sup>lt;sup>2</sup> Geological institute KSC RAS, Apatity, kalinin@geoksc.apatity.ru

<sup>&</sup>lt;sup>1\*</sup> Данная работа стала одной из последних для Юрия Степановича Полеховского. Юрий Степанович всегда проявлял интерес к новым объектам, новым минералам, вот и этот небольшой образец, подаренный Н.Б. Филипповым, был им изучен весьма основательно. Именно основательность, порядок, внимание к мелочам всегда отличали этого замечательного ученого и известного педагога. Мы взяли на себя труд обработать результаты исследований Ю.С. Полеховского и представить их в виде этой небольшой публикации.

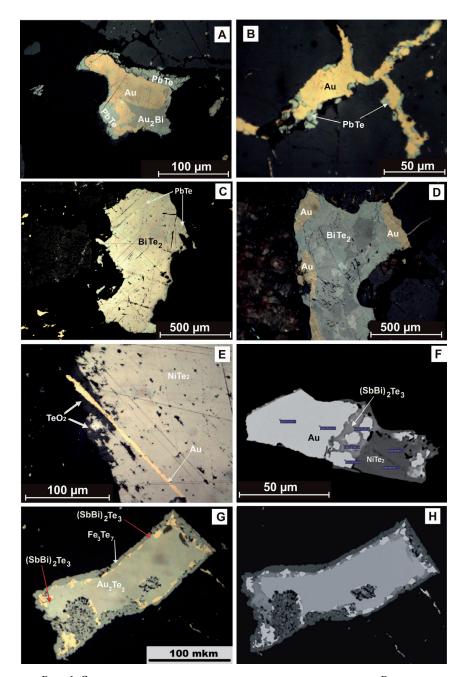



Рис. 1. Золото в срастании с теллуридами, рудопроявление Ромпас.

A – висмутид Aи (мальдонит) в ассоциации с самородным золотом, отраженный свет, без анализатора. B – самородное золото с алтаитом в прожилках в уранините, отраженный свет, без анализатора. C – теллурид Bі замещается алтаитом по спайности и с краев, отраженный свет, без анализатора. D – анизотропный теллурид Bі с золотом, отраженный свет, с анализатором. E – мелонит с выделением самородного золота по спайности, мелонит по краю замещается диоксидом теллура; отраженный свет, без анализатора. E – E0 – E1 – E2 – E3 – E4 – монтбрейит с теллурантимоном и самородным золотом обрастает каймой фробергита: E3 – отраженный свет, без анализатора. E4 – E5 – E6 анализатора. E8 – E7 – E8 анализатора. E8 – E9 –

## Fig. 1. Gold with tellurides, Rompas prospect.

A – maldonite with native gold and altaite, reflected light, one polarizer. B – native gold with altaite in veinlets in uraninite, reflected light, no polarizer. C – bismuth telluride, replaced by altaite along cleavage and at the grain boundaries, reflected light, no polarizer. D – bismuth telluride with gold, reflected light, with a polarizer. E – native gold along cleavage in melonite, reflected light, one polarizer. F – tellurantimony with gold and melonite, BSE-photo. G-H – overgrow of frobergite on the grain of montbrayite with tellurantimony and native gold: G – reflected light, no polarizer; H – BSE-photo.

как в пределах самих амфибол-карбонат-кварцевых жил, так и в их экзоконтактовых зонах в скарноидах (Гребенкин и др., 2015).

Самородное золото и его интерметаллические соединения на рудопроявлении всегда связаны с уранинитом (рис. 1) или с уранинитом и керогенами (Molnár et al., 2016).

Золото выполняет трещины в уранините, образует тонкую вкрапленность в карбонатах вблизи зерен уранинита, отмечается по трещинам усыхания в выделениях углеродистого вещества или нарастает на поверхность зерен керогенов (Molnár et al., 2016). Кроме золота в составе минерализации были отмечены галенит, алтаит, никелин, хунчунит, Рb-содержащий мальдонит, молибденит, кобальтин, пирротин, пентландит, пирит, халькопирит (Molnár et al., 2016).

Самородное золото наблюдалось нами в виде отдельных мономинеральных выделений размером до 7 мм (рис. 1, A), в прожилках по трещинам в уранините (рис. 1, B), а также реакционных каймах между теллуридами в виде цепочек мелких зерен (рис. 1, G).

Золото весьма высокопробное: средний состав изученных нами зерен (n=31): Au - 96.95 % до 99.25 %, в среднем 98.39 мас. %, Ag от 0 до 1.90 %, в среднем 0.87 %, Cu от 0.39 до 1.57, среднее 0.72 %; кроме того, есть два аномальных по содержанию серебра выделения золота с 3.42 и 3.70 % Ag.

Мальдонит  $Au_2Bi$  установлен в ассоциации с самородным золотом, зерно золота и мальдонита по краям замещается алтаитом (рис. 1, A). В составе минерала выявляется избыток катиона (табл. 1). Ранее на рудопроявлении Ромпас был описан минерал, близкий по составу к мальдониту (Molnár et al., 2016), но с высоким содержанием свинца, которое превышает содержание висмута:  $Au_{2.07-2.12}$  ( $Pb_{0.51-0.58}Bi_{0.42-0.49}$ ). По этой причине такое соединение правильнее было бы назвать висмутсодержащим хунчунитом. Впрочем, не исключено, что речь идет о новом минеральном виде с формулой  $Au_4PbBi$ .

Монтбрейит  $Au_2Te_3$  отмечен в виде гипидиоморфного зерна размером  $150\times50$  мкм в центре полиминерального зонального образования (рис.  $1\,\mathrm{G}$ ,  $\mathrm{H}$ ). По монтбрейиту узкой полосой развивается теллурид сурьмы и висмута, к которому приурочена цепочка мелких (до  $10\,\mathrm{mkm}$ ) выделений самородного золота, и все это обрастает каймой фробергита (рис.  $2\,\mathrm{G}$ ,  $\mathrm{H}$ ). В химическом составе монтбрейита (табл. 1) обнаруживается примесь висмута, но формульные коэффициенты близки к теоретическим. В составе фробергита отмечается некоторый дефицит железа (табл. 1).

Теллурид сурьмы и висмута (теллурантимон - ?) выявлен в виде каймы по границе монтбрейита ( $\mathrm{Au_2Te_3}$ ) и теллурида железа (рис. 1 G, H), а также отмечен по границе между золотом и мелонитом (рис.1, F). Цвет минерала белый с голубоватым оттенком, он отчетливо анизотропный и по оптическим свойствам отвечает теллурантимону  $\mathrm{Sb_2Te_3}$ . В составе минерала установлена значимая примесь висмута (табл. 1), но формула минерала хорошо рассчитываются на ( $\mathrm{Sb,Bi}$ ) $_{2.00}\mathrm{Te_{3.00}}$ . Возможно, выявленная минеральная фаза является промежуточной разновидностью между теллурантимоном и теллуровисмутитом.

Теллурид висмута  $BiTe_2$  образует отдельные зерна, кроме того, отмечен в ассоциации с самородным золотом (рис. C, D). Минерал белый с розоватым оттенком и слабым двуотражением, анизотропия отчетливая (рис. I, D). По трещинам спайности в зерне  $BiTe_2$  развивается алтаит. По химическому составу (табл. I) минерал соответствует формуле  $BiTe_2$ , но теллуриды висмута с таким соотношением элементов пока неизвестны. Требуется доизучение минерала с получением дополнительных данных.

Алтаит наблюдается в ассоциации с золотом в прожилках в уранините, развивается в виде каймы по золоту и мальдониту, замещает теллурид висмута по трещинам спайности (рис. 1, A-C). В составе алтаита иногда обнаруживается примесь висмута (табл. 1), но формульные коэффициенты близки к стехиометрическим.

Мелонит отмечен в срастании с золотом, иногда золото развито по спайности в мелоните (рис. 1 Е). Замещается мелонит диоксидом теллура. Химические составы мелонита и теллурита (табл. 1, 2) близки к теоретическим.

Таблица 1. Состав минералов золота и теллуридов рудопроявления Ромпас, масс. %. Table 1. Composition of gold minerals and tellurides from the Rompas prospect, wt. %.

| Минерал                         | Fe    | Ni    | Au    | Pb    | Sb    | Bi     | Те    | Сумма  | Кристаллохимическая формула                                     |
|---------------------------------|-------|-------|-------|-------|-------|--------|-------|--------|-----------------------------------------------------------------|
| Мальдонит                       | _     | _     | 68.25 | _     | _     | 31.75  | _     | 100.00 | Au <sub>2.28</sub> Bi <sub>1.00</sub>                           |
|                                 | _     | _     | 67.40 | _     | _     | 32.60  | _     | 100.00 | Au <sub>2.19</sub> Bi <sub>1.00</sub>                           |
|                                 | _     | _     | 68.04 | _     | _     | 31.96  | _     | 100.00 | Au <sub>2.26</sub> Bi <sub>1.00</sub>                           |
|                                 | _     | _     | 67.58 | _     | _     | 32.42  | _     | 100.00 | Au <sub>2.21</sub> Bi <sub>1.00</sub>                           |
| Монтбрейит                      | _     | _     | 50.00 | _     | _     | 2.15   | 47.85 | 100.00 | Au <sub>1.98</sub> (Te <sub>2.92</sub> Bi <sub>0.08)3.00</sub>  |
|                                 | _     | _     | 49.47 | _     | _     | 2.72   | 47.81 | 100.00 | Au <sub>1.94</sub> (Te <sub>2.90</sub> Bi <sub>0.10)3.00</sub>  |
|                                 | _     | _     | 49.30 | _     | _     | 2.99   | 47.72 | 100.00 | Au <sub>1.93 (</sub> Te <sub>2.89</sub> Bi <sub>0.11)3.00</sub> |
| Теллурид<br>висмута             | _     | _     | _     | _     | _     | 43.73  | 56.27 | 100.00 | Bi <sub>0.95</sub> Te <sub>2.00</sub>                           |
|                                 | _     | _     | _     | _     | _     | 43.76  | 56.24 | 100.00 | Bi <sub>0.95</sub> Te <sub>2.00</sub>                           |
|                                 | _     | _     | _     | _     | _     | 43.71  | 56.29 | 100.00 | Bi <sub>0.95</sub> Te <sub>2.00</sub>                           |
| Мелонит                         | _     | 18.80 | _     | _     | _     | _      | 81.20 | 100.00 | Ni <sub>1.01</sub> Te <sub>2.00</sub>                           |
|                                 | _     | 18.82 | _     | _     | _     | _      | 81.18 | 100.00 | Ni <sub>1.01</sub> Te <sub>2.00</sub>                           |
|                                 | _     | 19.74 | _     | _     | _     | _      | 80.26 | 100.00 | Ni <sub>1.07</sub> Te <sub>2.00</sub>                           |
|                                 | _     | 19.87 | _     | _     | _     | _      | 80.13 | 100.00 | Ni <sub>1.08</sub> Te <sub>2.00</sub>                           |
|                                 | _     | 17.56 | _     | _     | _     | _      | 82.44 | 100.00 | Ni <sub>0.93</sub> Te <sub>2.00</sub>                           |
|                                 | _     | 17.07 | _     | _     | _     | _      | 82.93 | 100.00 | Ni <sub>0.89</sub> Te <sub>2.00</sub>                           |
|                                 | _     | 18.60 | _     | _     | _     | _      | 81.40 | 100.00 | Ni <sub>0.99</sub> Te <sub>2.00</sub>                           |
|                                 | _     | 18.62 | _     | _     | _     | _      | 81.38 | 100.00 | Ni <sub>0.99</sub> Te <sub>2.00</sub>                           |
|                                 | _     | 17.80 | _     | _     | _     | _      | 82.20 | 100.00 | Ni <sub>0.94</sub> Te <sub>2.00</sub>                           |
|                                 | _     | 16.95 | _     | _     | _     | _      | 83.05 | 100.00 | Ni <sub>0.85</sub> Te <sub>2.00</sub>                           |
| Фробергит                       | 15.76 | _     | _     | _     | _     | _      | 84.24 | 100.00 | Fe <sub>0.86</sub> Te <sub>2.00</sub>                           |
|                                 | 15.78 | _     | _     | _     | _     | _      | 84.22 | 100.00 | Fe <sub>0.86</sub> Te <sub>2.00</sub>                           |
|                                 | 15.85 | _     | _     | _     | _     | _      | 84.15 | 100.00 | Fe <sub>0.86</sub> Te <sub>2.00</sub>                           |
|                                 | 15.98 | _     | _     | _     | _     | _      | 84.02 | 100.00 | Fe <sub>0.87</sub> Te <sub>2.00</sub>                           |
| Теллурид<br>сурьмы<br>и висмута | _     | _     | _     | _     | 19.01 | 25.23  | 55.76 | 100.00 | $_{(}Sb_{_{1.07}}Bi_{_{0.83)1.90}}Te_{_{3.00}}$                 |
|                                 | _     | _     | _     | _     | 19.38 | 24.90  | 55.72 | 100.00 | Sb <sub>1.09</sub> Bi <sub>0.82)1.91</sub> Te <sub>3.00</sub>   |
|                                 | _     | _     | _     | _     | 25.80 | 16.02  | 58.18 | 100.00 | (Sb <sub>1,39</sub> Bi <sub>0,50)1,89</sub> Te <sub>3,00</sub>  |
|                                 | _     | _     | _     | _     | 26.22 | 16.07  | 57.71 | 100.00 | (Sb <sub>1.43</sub> Bi <sub>0.51)1.94</sub> Te <sub>3.00</sub>  |
|                                 | _     | _     | _     | _     | 27.27 | 14.79  | 57.95 | 100.00 | Sb <sub>1.48</sub> Bi <sub>0.47)1.95</sub> Te <sub>3.00</sub>   |
|                                 | _     | _     | _     | _     | 27.07 | 14.19  | 58.74 | 100.00 | (Sb <sub>1.45</sub> Bi <sub>0.44)1.89</sub> Te <sub>3.00</sub>  |
|                                 | _     | _     | _     | _     | 26.33 | 15.92  | 57.75 | 100.00 | Sb <sub>1.43</sub> Bi <sub>0.50)1.93</sub> Te <sub>3.00</sub>   |
|                                 | _     | _     | _     | _     | 27.52 | 13.80  | 58.67 | 100.00 | $(Sb_{1.47}Bi_{0.43)1.90}Te_{3.00}$                             |
| Алтаит                          | _     | _     | _     | 64.20 | _     | н.обн. | 35.80 | 100.00 | Pb <sub>1.10</sub> Te <sub>1.00</sub>                           |
|                                 | _     | _     | _     | 62.62 | _     | н.обн. | 37.38 | 100.00 | Pb <sub>1.03</sub> Te <sub>1.00</sub>                           |
|                                 | _     | _     | _     | 62.00 | _     | н.обн. | 38.00 | 100.00 | Pb <sub>1.10</sub> Te <sub>1.00</sub>                           |
|                                 | _     | _     | _     | 62.77 | _     | н.обн. | 37.23 | 100.00 | Pb <sub>1.04</sub> Te <sub>1.00</sub>                           |
|                                 | _     | _     | _     | 62.32 | _     | н.обн. | 37.68 | 100.00 | Pb <sub>1.02</sub> Te <sub>1.00</sub>                           |
|                                 | _     | _     | _     | 60.41 | _     | 2.59   | 37.00 | 100.00 | $(Pb_{1.01}Bi_{0.04})_{1.05}Te_{1.00}$                          |
|                                 | _     | -     | _     | 61.90 | _     | н.обн. | 38.10 | 100.00 | Pb <sub>1.00</sub> Te <sub>1.00</sub>                           |
|                                 | _     | _     | _     | 59.67 | _     | 4.13   | 36.20 | 100.00 | $(Pb_{1.02}Bi_{0.07})_{1.09}Te_{1.00}$                          |
|                                 | _     | _     | _     | 57.36 | _     | 6.63   | 36.01 | 100.00 | $(Pb_{0.98}Bi_{0.11})_{1.09}Te_{1.00}$                          |

Примечания: н.обн. – элемент не обнаружен; прочерк – элемент не определялся.

Таблица 2. Химический состав диоксида теллура, масс. %.

Table 2. Composition of tellurium dioxide, wt. %.

| О     | Те    | Сумма  | Кристаллохимическая формула |
|-------|-------|--------|-----------------------------|
| 19.06 | 81.1  | 100.16 | $Te_{1.07}O_{2.00}$         |
| 20.07 | 80.81 | 100.88 | $Te_{1.01}O_{2.00}$         |

Наблюдаемые взаимоотношения минералов золота, теллура, висмута (например, рис. 1 A, B, F, G) говорят о многостадийной истории рудогенеза. Понятно, что развитие рассматриваемой минерализации проходило после отложения крупнозернистого уранинита. К ранним теллуридам следует отнести монтбрейит, никелин, теллурид висмута, позднее отлагался теллурид сурьмы и висмута, последними – алтаит и фробергит. Что касается золота, то, вполне вероятно, оно неоднократно переотлагалось, сформировав несколько генераций.

## Литература

- 1. Гребенкин Н.А., Леденева Н.В., Филиппов Н.Б., Житников В.А., Литвиненко В.И. Особенности уранзолоторудных проявлений группы Ромпас и объекта Палокас (Северная Финляндия) // Разведка и охрана недр. 2015. № 5. С. 11–15.
- 2. Калинин А.А. Золото в метаморфических комплексах северо-восточной части Фенноскандинавского щита. Апатиты. ФИЦ КНЦ РАН. 2018. 250 с.
- 3. Mineral deposits of Finland / Maier W.D., Lahtinen R., O'Brien H. (editors). Amsterdam: Elsevier, 2015. 792 p.
- Molnár, F.; Oduro, H.; Cook, N.D.J.; Pohjolainen, E.; Takács, Á.; O'Brien, H.; Pakkanen, L.; Johanson, B.; Wirth, R. Association of gold with uraninite and pyrobitumen in the metavolcanic rock hosted hydrothermal Au-U mineralisation at Rompas, Peräpohja Schist Belt, northern Finland // Mineral. Depos. 2016. V. 51. P. 681–702.
- 5. Molnár, F.; O'Brien, H.; Stein, H., Cook, N.D.J.; Geochronology of Hydrothermal Processes Leading to the Formation of the Au–U Mineralization at the Rompas Prospect, Peräpohja Belt, Northern Finland: Application of Paired U–Pb Dating of Uraninite and Re–Os Dating of Molybdenite to the Identification of Multiple Hydrothermal Events in a Metamorphic Terrane //Minerals. 2017. V. 7(9). 171 p.